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Abstract. Bimodal distributions of some chosen variables measured in nuclear collisions were recently
proposed as a non-ambiguous signature of a first-order phase transition in nuclei. This section presents a
compilation of both theoretical and experimental studies on bimodalities performed so far, in relation with

the liquid-gas phase transition in nuclear matter.

PACS. 25.70.Pq Multifragment emission and correlations — 24.60.-k Statistical theory and fluctuations
— 64.60.Cn Order-disorder transformations; statistical mechanics of model systems — 25.70.-z Low and

intermediate energy heavy-ion reactions

After a formulation of the theoretical bases of bimodal-
ity, world-wide experimental results will be reviewed and
discussed, as well as the occurrence of some kind of bi-
modality in models. Finally, conclusions on the perspec-
tives of such analyses in the near future and the possi-
ble connections to other proposed signals of the liquid-gas
phase transition in nuclear matter will be given.

1 Theoretical bases
1.1 Definition

Bimodality is a property of finite systems undergoing a
first-order phase transition [1-3]. It is thus a generic fea-
ture which concerns not only nuclear physics but a broad
domain of physics such as astrophysics, or soft-matter
physics. Bimodality means that the probability distribution
of an order parameter of the considered system at phase
transition exhibits two peaks separated by a minimum. In-
deed, if the system is in a pure phase, the order parameter
distribution consists in one peak and can be characterized
by its mean value and its variance. By contrast, if the sys-
tem is in the coexistence region, the distribution presents
two peaks, well separated, whose properties are related to
the two different phases of the system [2]. Bimodality is
then one of the signals associated to a first-order phase
transition [3], beside others such as scaling laws, critical
exponents or negative heat capacities.

In the following, the term “bimodality” will abbreviate
“the probability distribution of some variable, in a given
region of the phase diagram of the system, is bimodal”.

# e-mail: lopezo@lpccaen.in2p3.fr

1.2 Pioneering studies

Bimodality and its relationship to phase transition has
been studied since the ’80s. Figure 1 shows an Ising model
simulation of a ferromagnet studied by Binder and Lan-
dau [4]. In this analysis, the authors studied the mag-
netization M of the system as a function of the applied
magnetic field H. When the magnetic field comes close
to the critical value H., the spontaneous magnetization
of the ferromagnet presents a sudden change; in this case
the probability distribution of the magnetization is never
bimodal, as the system “jumps” suddenly from the nega-
tive value —M, to the positive one +M,,: the transition
between the two regimes is sharp at the thermodynamical
limit.

By contrast, when the size of the system is finite (and
defined by the number of sites L), the step function is
replaced by a smooth curve in fig. 1, with a slope pro-
portional to L¢ —where d is the dimensionality of the
system. Consequently, in the vicinity of H., the magne-
tization M exhibits a bimodal structure, as shown in the
bottom panel of fig. 1.

1.3 Link with phase transition in thermodynamics

It was recently demonstrated by Chomaz and Gulminelli
that bimodality of the probability distribution of the order
parameter is equivalent to the other definitions of phase
transition proposed up to now [5].

1.3.1 Relationship to the Yang-Lee theorem

The Yang-Lee theorem [6] is considered as the standard
definition of first-order phase transitions at the thermo-
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Fig. 1. Evolution of the magnetization M, as a function of
the applied magnetic field H, in the Ising model for a lattice
defined by the size L. The bottom panel presents a schematic
probability distribution of the magnetization between —Mp,
and +Mp, around the critical field value H.. Taken from [4].

dynamic limit. As demonstrated in [5], bimodality is a
necessary and sufficient condition for zeroes of the parti-
tion sum in the control intensive variable complex plane
to be distributed on a line perpendicular to the real axis.

1.3.2 Anomaly of thermodynamical potentials

A first-order phase transition is characterized by an in-
verted curvature of the relevant thermodynamical poten-
tial (entropy, free energy) [7,8]. This feature is also equiv-
alent to a bimodality in the event probability of the given
order parameter X as displayed in the upper part of fig. 2.

1.3.3 Negative derivatives of the thermodynamical
potentials

A first-order phase transition was also related to a back-
bending in the equation of state of the system [7], char-
acterized by a negative second derivative of the thermo-
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Fig. 2. Entropy S of the system as a function of an order
parameter X of the phase transition. The relation is made be-
tween the convex intruder of S, the bimodal distribution in X
(top) and the abnormal fluctuations of X in the phase coex-
istence region (bottom). A is the intensive variable associated
with X. Taken from [7].

dynamical potential, as, for example, the heat capacity if
the energy is the order parameter, fig. 2 bottom.

1.4 Microcanonical vs. canonical ensemble

Among the observables signing a phase transition, the
heat capacity is related to the fluctuations of the par-
tial energy of the system and needs to be studied in the
microcanonical ensemble, while bimodality can only be
observed when the system is free to fluctuate in terms of
the associated extensive variable (i.e. energy or volume).
This case corresponds to canonical or isobar ensembles. In
other words, events must be selected without constraint
on the extensive variable in order to study bimodality.
However, in nuclear-physics experiments, the two collid-
ing nuclei form an isolated system: it seems thus natural
to work in a microcanonical ensemble, and cuts can be
applied on the energy of the system, determined, for in-
stance, by calorimetry. It seems conversely out of reach
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Fig. 3. Energy distributions obtained in the Gaussian ensem-
ble for different a = N/N’. Taken from [9].

to be in a canonical framework which would require the
existence of a large heat bath.

The situation is not hopeless, as it was shown some
years ago that properties of phase transitions can be ob-
served even if the working ensemble is not strictly micro-
canonical or canonical, but is an interpolating ensemble.
In Gaussian ensembles, for instance, it is supposed that N
particles are in contact with a system of N’ particles act-
ing as a heat bath at temperature T'. When N’ varies from
0 to oo, the working ensemble mimicks the transition be-
tween microcanonical and canonical [9]. Figure 3 presents
the results of such a simulation, where it is clearly seen
that the probability distribution of the energy —in the
transition region— presents a bimodal shape only when
N/N' is small enough (< 1/1000), while for larger N/N’,
the situation is that of the microcanonical case with only
one peak in the distribution.

1.5 Liquid-gas phase transition

Since nuclei are supposed to undergo a liquid-gas phase
transition, specific studies of this peculiar transition were
undertaken through lattice-gas calculations. In liquid-gas
phase transitions, volume as well as energy are order pa-
rameters. The bimodality of the event probability distri-
bution in the first-order phase transition region is evident
in fig. 4 which shows the location of events in the vol-
ume vs. energy plane (top left). The projections along the
axes (F, V) also display the expected bimodality, as does a
linear combination of these two order parameters (bottom
right). In this framework (lattice-gas model), bimodality is
evidenced if we are able to select (sort) events in a canon-
ical way (or as close as possible, see previous section), and
plot the event probability distribution of the energy or
volume, or any observable directly related to them.

2 Experimental observations

Since bimodality was proposed as a signature of liquid-gas
phase transition, it was extensively searched for in event
samples resulting from nuclear collisions; studies were

Bimodalities: A survey of experimental data and models
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Fig. 4. Probability distributions of the energy F, volume V'
and a combination of the two variables coming from a lattice-
gas simulation in the canonical ensemble. Taken from [2].

made for central collisions, where the liquid-gas phase
transition is clearly evidenced by previous analyses (see
sect. “Signals of phase transition”, this topical issue) as
well as for peripheral collisions, where a large range of
excitation energy can be explored.

2.1 Central collisions: systems with mass ~ 250

Systems with total mass close to 250 were studied with the
INDRA array using two entrance channels, an asymmetric
one, Ni+ Au, and an almost symmetric one, Xe + Sn. In
both cases, in the incident energy range scanned, it was
shown that a fused system was formed in central collisions.

Bellaize et al. [10] have reported the observation of
bimodality of the size asymmetry of the two largest frag-
ments in central events for the Ni+ Au system at 32 A,
52 A and 90 AMeV. It was associated with two fragmen-
tation patterns (see first row of fig. 5), one similar to
residue-evaporation (one large fragment with few small
ones, zone 1 in fig. 5), the other to multifragmentation
(fragments of nearly equal size, zone 2). A variable built
with the charges of the three largest fragments, Z1, Zs, Z3
in decreasing order,

Zl _3(22+Z3)7 (1)

also has a bimodal distribution at 32 A and 52 AMeV,
as shown in the bottom row of fig. 5, but no longer at
90 AMeV. This fact is compatible with the location of the
system in the coexistence region below 52 A MeV, where it
can experience a first-order phase transition by exploring
different densities and temperatures. For higher energies
(here 90 AMeV), the system passes directly through the
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Fig. 5. Correlation between the two largest fragments, Z; and Z2 obtained in central collisions for the Ni+ Au system at
32 A (left), 52 A (middle) and 90 A MeV (right). The bottom row shows an asymmetry variable built as a linear combination of
the atomic number of the three largest fragments. Taken from [10].
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Fig. 6. Probability distributions of the charge asymmetry be-

tween light (Z = 3-12) and heavy fragments (Z > 12) for

fused events in the Xe + Sn system at 32 A, 39 A, 45 A and

50 AMeV. Taken from [11].

coexistence region and we observe only the presence of
the multifragmentation regime, which could indicate that
the system explores only the low-density part of the phase
diagram.

Figure 6 shows the distributions obtained when look-
ing at the asymmetry ratio between heavy, (Z > 13), and
light, (Z = 3-12), fragments

(Z Z>13 — Z Z3—12) /Z Z>3

for single-source events produced in central Xe 4+ Sn col-
lisions between 32 A and 50 AMeV [11]. Bimodality is
present at all energies, with dominant “liquid-type” events
at 32 AMeV, and a dominance of “gas-like” events at and

(2)
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Fig. 7. Charge asymmetry obtained by using a stochastic
mean-field simulation (BOB [12]) for central events of the
Xe + Sn system at 32 AMeV. Unpublished results from the
authors of [14].

above 45 AMeV; the two types of events are in roughly
equal number at 39 A MeV, where other phase transition
signals have been already observed (see contribution V.5,
Many-fragment correlations and possible signature of spin-
odal fragmentation, this topical issue). The authors of [11]
relate the chosen asymmetry variable to the density differ-
ence between the coexisting liquid and gas phases of nu-
clear matter. The same variable was built for the events
resulting from a stochastic mean-field simulation [12] of
head-on collisions between Xe and Sn at 32 A MeV. In this
simulation, which was shown to well reproduce many ex-
perimental features, single variable distributions as well as
different correlations [13-15] (see contribution V.5, Many-
fragment correlations and possible signature of spinodal
fragmentation, this topical issue), the system enters the co-
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existence region and multifragments through spinodal de-
composition. The equivalent of fig. 6 for simulated events
is shown in fig. 7; the picture is very similar to the exper-
imental data at the same energy (black stars in fig. 6), a
bimodal behaviour appears with a dominance of events of
liquid type.

2.2 Central collisions: systems with mass ~ 100

Central collisions between two ®8Ni nuclei were studied at
incident energies between 32 and 90 A MeV; event selec-
tion was made through a discriminant factorial analysis
trained, at variance with ref. [16], on the complete ex-
perimental events. A bimodal distribution of the largest
fragment was observed at 52 A MeV, intermediate between
the Gaussian distributions measured at lower energies and
the asymmetric distributions found from 74 A MeV up-
wards [17], see fig. 8. The minimum is rather shallow
(about 80% of the peak value); at 64 AMeV a bimodal
distribution persists, but now the peak on the more frag-
mented side is dominant. Conversely, the distributions of
the fragments of higher rank (not shown) are monotonous.
To our knowledge, this is the only direct observation of bi-
modality on the largest fragment.

2.2.1 Going further

Central collisions allowed to study and evidence a bi-
modal behaviour of some asymmetry variables, which can
be connected to the density difference between a liquid
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Fig. 8. Distributions of the largest fragment for central Ni + Ni
collisions from 32 to 90 AMeV (bottom). The same distribu-
tions at the four lowest energies are displayed in linear scale in
the top panels. Taken from [17].
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and a gas phase; in that sense they would be good can-
didates for being order parameters of a liquid-gas—type
transition. Nevertheless, several drawbacks can be pointed
out; firstly it was shown that the lighter fragments ex-
hibit a pre-equilibrium component in Ni+ Au [10], while
radial-flow effects were recognised in symmetric systems,
Xe + Sn [18-20] and Ni+ Ni [17]. But above all, the sort-
ing of central events selects a rather narrow region in exci-
tation energy for each incident energy (about 1-2 A MeV
at half-maximum of the distribution). This is closer to a
microcanonical working ensemble and may prevent a very
clear observation of bimodality.

2.3 Quasi-projectiles in peripheral collisions

Analyses of quasi-projectiles formed in peripheral and
semi-peripheral reactions are thus mandatory, as they al-
low to overcome some of the abovementioned problems. In
particular a broad excitation energy distribution of quasi-
projectiles (QP) can be accessed. Exchanges of energy and
particles with the quasi-target (QT), while it lies in the
neighbourhood of the QP and especially when it is heavy,
mimick a small heat bath and an almost canonical sorting
can be envisaged. Whenever the incident energy is high
enough, the different components (the QT and the QP,
and the pre-equilibrium or neck part) can be better dis-
entangled, or at least the uncertainties caused by their
existence can be circumvented.

Most of the studies on quasi-projectiles arise from Au
on Au collisions at various energies. Extensive results con-
cerning a very light nucleus, close to argon were also re-
cently proposed. Several variables are used for sorting
events as a function of the violence of the collisions; among
the most commonly employed one can cite multiplicities
and the transverse energy (relative to the beam axis) of
charged products, either all of them or only light charged
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corresponds to the Zyounda selection displayed by the high-
lighted area in the top panel. Taken from [27].
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from [26].

particles (Z = 1,2) [21-24]. Other sortings are based on
Zbound (the sum of charges for fragments, Z > 2), as pro-
posed by the ALADIN Collaboration [25], or on the exci-
tation energy (NIMROD Collaboration) [26].

2.3.1 Au quasi-projectiles at relativistic energies

The ALADIN Collaboration reported the presence
of bimodality for peripheral Au+ Au reactions at
1 AGeV [27]. Figure 9 shows the Zpoynqg distribution (top
panel) where the selected region, Zyouns = 53-55, is high-
lighted for which was drawn the charge asymmetry be-
tween the three largest fragments,

Zy — Zoy — 23, (3)

in the bottom panel. The charge asymmetry exhibits two
components, the first one centered at low values (close
to 0), which is associated to multifragmentation events,
and the second one located at values around 40, which
is more likely due to an evaporation residue of charge Z
close to Zpoung- It is worth saying that a percolation simu-
lation was able to reproduce this bimodality in the charge
asymmetry at the transition point. In this case, this is a
second-order phase transition. This point will be discussed
below in the section “Pending questions”.

2.3.2 A smaller system with mass ~ 40

In a very complete analysis, Ma et al. [26] scrutinized data
collected with the NIMROD array. They were able to re-
construct, from their emitted particles and fragments, the

quasi-projectiles formed in 47 A MeV Ar + Al, Ti, Ni colli-
sions. The method used consisted in tagging the particles
with the help of a three-moving-source fit (QP, QT and
mid-rapidity) and then attributing to each of them, event
per event, a probability to be emitted by one of these
sources. Completeness of quasi-projectiles, (Zgp > 12),
from semi-peripheral collisions was further required; QP
excitation energy was determined using the energy bal-
ance equation. The distributions of excitation energy so
obtained for the three targets superimpose, showing that
the QP excitation energy calculation is under control.

Plots of the charge of the second largest fragment vs.
the largest one are shown in fig. 10. As for heavier sys-
tems, the topology evolves from residue-evaporation to
multifragmentation with increasing excitation energy. An
equipartition of events between two topologies is observed
for E*/A = 5.5MeV, where at the same time fluctua-
tions on the size of the largest fragment are the largest,
the power law exponent for the charge distribution is mini-
mum, and scaling laws are present. Here again, bimodality
is observed at the same time as other possible indicators
of a phase transition.

2.3.3 Toward a canonical event sorting?

In the previous cases the sorting for peripheral reactions
uses properties of the studied source itself (here the QP)
and is then probably more akin to a microcanonical than a
canonical sorting. Indeed the bimodal character of the dis-
tribution is not very marked, as expected if the experimen-
tal sorting constrains strongly the excitation energy [28].
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To attempt a true canonical sorting one must discriminate
the studied system from some heat bath. A first tentative
in that aim was the study of Au quasi-projectiles through
a sorting performed on the transverse energy of the par-
ticles of the Au quasi-target (as the system is symmetric,
this amounts to particles emitted backward in the c.m.).
This sorting is illustrated by the results presented here-
after.

2.3.4 Au-like nuclei in a “canonical” sorting

Au quasi-projectiles from Au+ Au collisions at various
incident energies were widely studied. Two examples are
given here, at 35 AMeV —results from the MULTICS-
MINIBALL Collaboration [29]— and at 80 AMeV, data
from the INDRA/ALADIN Collaboration [30]. In both
cases data were sorted wvs. the transverse energy of the
QT light charged particles. The charge of the largest frag-
ment in each event is plotted in figs. 11, 12 wvs. the charge
asymmetry of the two largest fragments,

(Z1 = Z2)[(Z1 + Z2). (4)

Whatever the incident energy, the picture evolves from
an evaporation residue to a multifragmentation configu-
ration, passing through a zone where the two topologies
coexist, separated by a neat minimum; in this zone (last
one at 35 AMeV, third one at 80 A MeV) the distributions
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present a bimodal behaviour. Note that the bimodal char-
acter is not very strong when one projects the bidimen-
sional figures on either Z,,,, or on the asymmetry. This
is attributed in [30] to the presence of pre-equilibrium ef-
fects, and some remaining aligned momentum which tend
to shallow the minimum of a bimodal distribution.

3 Bimodality in models

Different statistical as well as dynamical models explicitly
or implicitly contain a phase transition. They predict the
occurrence of bimodal distributions for selected variables
around some transition energy. Examples are given in this
section.

3.1 SMM: Statistical Multifragmentation Model

Buyukcizmeci, Ogul and Botvina [31] analyzed SMM sim-
ulations for heavy nuclei of various sizes, with excitation
energy ranging from 2 to 20 MeV /nucleon. They found
that all nuclei exhibit the same caloric curve, depicted in
the top panel of fig. 13, with the well-known “plateau”
between 4 and 7MeV /nucleon (note in passing that the
common temperature at plateau whatever the mass of the
considered nucleus is in contradiction with the experimen-
tal results analyzed in ref. [32]). In the same energy in-
terval as that of the plateau, the fluctuations of A,,qz
(not shown) and of the temperature (panel (b) of fig. 13)
are maximum. The authors sorted the events following
the size of the largest fragment, A,,4,. They defined two
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event classes, one with A,,q. > 240/3, representative of
the residue-evaporation channel and the other one with
Apmaz < Ag/3, characterizing multifragmentation events
—Ag being the total system size. Panel (c) of fig. 13 shows
that the probability of the first group decreases rapidly in
the excitation energy range 2-6 MeV /nucleon, while that
of the second one increases. The temperatures T asso-
ciated to each class are different, as appears on the re-
lated caloric curves: the residue-evaporation class shows
a Fermi-gas behaviour (proportional to T squared), while
the multifragmentation class is associated to a classical
gas (linear in T'). The combination of these two behaviours
gives rise to the plateau zone in the total caloric curve and
explains the inflexion point of this curve. One is thus deal-
ing with a direct bimodal behaviour, with two excitation
energies associated with one temperature in the transition
region. This behaviour is an intrinsic feature of the phase
space population in the SMM.
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Fig. 14. Mass correlation between the two largest frag-
ments (left) and mass asymmetry, 7, as a function of the ex-
citation energy (right), for collisions of LJ droplets. The top
panel is associated to central collisions; the middle to quasi-
projectiles from peripheral collisions and the bottom panel to
“thermalized” systems (see text) [34].

3.2 CMD: Classical Molecular Dynamics

Signals of phase transition were searched for in dynam-
ical models. A simple example is a Classical Molecular
Dynamics model with a Lennard-Jones potential imple-
mented by Cussol [33]. With such a potential, analogous
to the van der Waals interaction for fluids, the model in-
cludes a liquid-gas phase transition. Symmetric collisions
of LJ droplets with sizes of 50 + 50 and 100 + 100 are
analyzed. Systems were prepared in three different condi-
tions:

— central collisions (small impact parameters),

— peripheral collisions (all impact parameters but look-
ing at the forward zone, “quasi-projectiles”),

— “thermalized” systems (particles are placed in a box of
volume V/Vy = 8 and released after a time sufficient
to reach thermal equilibrium).

Two variables were scrutinized, the size asymmetry be-
tween the two largest fragments, 7 (eq. (4)), and the mass
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correlation between these same fragments [34]. The re-
sults, for systems comprising 100 droplets, are presented
in fig. 14 (top: central collisions, middle: quasi-projectiles
and bottom: thermalized system). Excitation energies are
expressed in ESU, ratio between the excitation energy per
particle and the binding energy of the least bound particle.

Bimodality —the occurrence of two fragmentation pat-
terns in a given energy zone— is present in all situations,
but at different excitation energies: 1 ESU for central col-
lisions, 1.5 ESU for quasi-projectiles, and ~ 1.8 ESU for
the thermalized system. It is however worth to mention
that if the thermalized system is prepared at higher den-
sities (p/po = 1-1.5) the transition between the fragmen-
tation patterns also occurs but at lower excitation energy,
namely < 1 ESU [34]. Cussol attributes the differences
in the transition energy to the lack of complete thermal-
ization of any source produced in nuclear collisions, what-
ever the impact parameter. One can conversely argue that
this study proves that bimodality is a robust signature of
phase transition, as it survives even if the system is not
fully thermalized, although the apparent transition energy
is displaced. This point will be developed later.

3.3 HIPSE: Heavy-lon Phase Space Exploration

The Heavy-Ion Phase Space Exploration model (HIPSE)
comprises a full (classical) treatment of the entrance chan-
nel (nucleus-nucleus potential, NN collisions). It is fol-
lowed by a random sampling of nucleons in the partic-
ipant zone from Thomas-Fermi distributions of the two
colliding nuclei to form fragments in the dense zone [35].
Excitation energy is shared among all products, taking
into account the total energy constraint. Finally a statis-
tical de-excitation (SIMON code [36]) of the fragments,
including QP and QT —if they are still present— is per-
formed.

Simulations were done for all impact parameters, to
mimick a real 50 AMeV Xe + Sn experiment, then the
same analysis as in [30] was performed by Lopez et al. [37];
a bimodal structure was observed in the correlation be-
tween Z,,q., and the charge asymmetry of the two largest
fragments (eq. (4)). In a model however one can go fur-
ther and track the origin of the bimodal behaviour: is it
due to the entrance channel (dynamical effect) or to the
de-excitation step? The first hypothesis was ruled out, as
no discontinuity was found in the evolution of the size
of the hot largest fragment with the impact parameter:
the bimodality was clearly attributed to the statistical de-
excitation of the QP. A deeper analysis of the de-excitation
stage was then achieved through the simulated statistical
de-excitation of xenon nuclei of different excitation ener-
gies and spins with the SIMON code [36]. This is depicted
in fig. 15, where the distributions of the asymmetry vari-
able (eq. (4)) are plotted for several initial conditions. In-
creasing the excitation energy does decrease the average
charge asymmetry, but never down to the small values ob-
served in the data. Conversely, if more spin is given to the
nucleus, the asymmetry variable displays a sharp transi-
tion around 60-70A, which corresponds indeed to the an-
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Fig. 15. Charge asymmetry distributions resulting from the
de-excitation of hot Sn nuclei with different initial excitation
energies (columns) and spin (rows), with the SIMON code.
Taken from [37].

gular momentum for which the symmetric fission barrier
vanishes.

The authors of [37] conclude that, in the HIPSE model,
the observed bimodality found its origin in the spin rather
than in the excitation energy transferred to the QP, being
still a phase transition but not of the liquid-gas type. It
is worth mentioning that using the SMM model for the
de-excitation stage, the authors also observe bimodality
in the size of the largest fragment. This is not surprising
in view of the abovementioned study with the SMM. How-
ever, this raises the important issue —still under debate—
of the order parameters (and then the type of the phase
transition) which govern the bimodality. This point will
be discussed below in the section “Perspectives”.

4 Pending questions

As seen in the previous sections, bimodality is a very com-
mon feature in nuclear collisions at intermediate energies.
It is present in central as well as in peripheral collisions.
It takes place for a large range of masses, A = 40-200. It
was however mentioned in the course of the text that it
is experimentally difficult to isolate a source, because of
dynamical effects leading to a mixture of pre-equilibrium
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Table 1. World-wide experimental results on bimodality
recorded in July 2005.

Results Reaction | Source Bimodal

from centrality size variable
INDRA Central | ~ 200 |Z; — Z> (egs. (1), (4))
INDRA Central | ~ 200 | Ziig — Zgas (eq. (2))
INDRA Central ~ 100 Zmaz

INDRA Peripheral | 160-180| Z1 — Z2 (eq. (4))
MULTICS/ | Peripheral | ~ 180 Z1 — Z> (eq. (4))
MINIBALL

ALADIN Peripheral | ~ 130 |Z1 — Zs — Z3 (eq. (3))
NIMROD Peripheral | 24-40 Ziiqg — Zgas

products and of QP/QT de-excitation particles. Even if a
source can be properly defined, one has to verify its degree
of thermalization. Indeed radial flow was found, particu-
larly in central collisions, and transparency effects were
also evidenced [38]. It seems however from both experi-
mental [30] and theoretical [37] studies that bimodality is
not mainly driven by dynamical effects. Ambiguities re-
main in the type of phase transition observed, and conse-
quently on the definition of a true order parameter. Some
of these questions were addressed recently and are pre-
sented in the following.

Table 1 gathers all experimental results on bimodal-
ity found so far. A glance at the table indicates that bi-
modality was essentially found in charge asymmetry vari-
ables comprising the two or three largest fragments of
each event. Such variables can in some sense be related
to the density difference between a dense (liquid) and a
dilute (gas) phase; in some models, for instance the Fisher
droplet model, the largest fragment is assimilated to the
liquid while all the other form the gas.

4.1 Are Z,,5x, Amax, or the asymmetry order
parameters?

Simulations were performed in different frameworks to
test whether the observables Z,,44, Amasz, Or the asym-
metry, reliably sign a phase transition. Let us recall that
a bimodality of an order parameter signs the occurrence
of a first-order phase transition in a finite system. Fig-
ure 16 shows the outcomes of three simulations in the
transition region —when it exists; there is no phase tran-
sition in the random partitions calculation, while percola-
tion has a second-order transition and lattice gas a first-
order one [39]. The distributions of the largest fragment
A evidence that A,,., only presents a bimodal dis-
tribution for the canonical lattice-gas calculation. This
means that A,,.. is indeed an order parameter of the
first-order phase transition of the lattice gas. The distribu-
tion presents a wide plateau, as expected, in the case of a
continuous transition (percolation). By contrast, the mass
asymmetry, Agsy, defined in a similar way as the charge
asymmetry (eq. (4)), also displays a bimodality (although
with a less marked minimum) for simulations which have a
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Fig. 16. Largest fragment A,,.. (top) and mass asymme-
try Aasy (bottom) distributions for three simulations. Left:
random partitions (no phase transition), middle: percolation
(2nd-order phase transition) and right: canonical lattice gas
(1st-order phase transition). Taken from [39].

2nd-order phase transition (percolation, middle column).
The conclusion of this study is that both Ay, and Agsy
clearly signal a phase transition —note that none of them
presents bimodality in a model without phase transition—
but A,,q. is the only unambiguous signature of the order
of the transition.

4.2 Order parameters of the liquid-gas phase transition

If nuclei undergo a liquid-gas—type phase transition, then
the order parameters are known: energy, volume. In
some of the experimental studies cited above, the au-
thors try to push the analysis beyond the single obser-
vation of bimodality on the asymmetry variable. As a
first attempt, in central collisions between Ni and Au at
52 AMeV [10], the excitation energies (experimentally de-
duced from the energy balance equation) associated to
the two fragmentation patterns were found slightly differ-
ent (by 1 AMeV) [40]. This bimodality of the excitation
energy is an indication in favour of the liquid-gas type of
the phase transition observed.

Studies of Au quasi-projectiles were deepened by the
authors of ref. [30]: a test of the reliability of the canonical
picture was accomplished by estimating the apparent tem-
peratures of the two types of events, from the slope of the
emitted proton spectra for residue-like events, and from
double isostope ratios in the multifragmentation regime.
As seen in fig. 17 both temperatures are close enough in
the region where bimodality is present (Etrans = 0.8—
1.2 AMeV), while the excitation energies, calculated with
the energy balance equation, are different. This is expected
if bimodality has a thermal origin and validates the sorting
as close to a canonical one.

4.3 Does bimodality survive out-of-equilibrium effects?

The influence of non-equilibrium effects on signals of phase
transition was studied in [41] in the case of incompletely
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Fig. 17. Apparent temperatures of Au quasi-projectiles as
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Taken from [30].

12 102 107 107 102 107 1
0 e 1 O
5 [sYe=00.1.05 1 § T=.68¢ ]
O [T=65¢ i ]
" _n ‘ -2
010 o =10
o T -
e L £ 7
Q T i i
-3 -3
=] 0 —l—H+HH| : et 10
= ) Tons AL 2
'@ £ £ 310
S’ F | s J
o 7 ! T (g
210 = = =10
o T E
-3 | \ T I
10 RN IIIIIIIII SR RN IIIIIIIﬂ' 1 IIIIII|' | Il IIII‘IQ

1072 1072 AE;} Afl_z' 1072 AE;} A,1

Fig. 18. Canonical lattice-gas simulations for different tem-
peratures T around the critical one T, = 0.68¢ for the distri-
butions of the largest fragment. Simulations are performed by
adding an extra radial-flow energy Ap?/p* between 0 and 1.
Taken from [2].

relaxed incoming momentum (transparency) and of self-
similar radial flow. Both effects were indeed recognized in
experimental data. Figure 18 displays results of (canoni-
cal) lattice-gas simulations with different radial-flow ener-
gies; Ap? /p? is equivalent to the ratio € 10, /45 and is var-
ied from 0 to 1. At the transition temperature, T' = 0.68¢,
a bimodality of A, is clearly seen in the absence of flow,
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and is still visible even when the flow energy is as impor-
tant as the thermal energy (top right panel). The authors
state thus that radial flow does disturb the signal, partially
filling the gap between the two components, but does not
destroy it as long as the flow does not dominate the global
energetics. Similar conclusions were drawn in this paper
in the presence of longitudinal flow (transparency effects).

These two examples illustrate the robustness of bi-
modality wvs. external (and realistic) constraints due to
the dynamics of the collision; similar conclusions can also
be derived from CMD simulations (see above).

In experimental data on Au quasi-projectiles [30],
refined treatments aiming at better isolating quasi-
projectiles from the mid-rapidity contribution and keep-
ing only events where this contribution was smaller were
tempted. In all cases the bimodal picture comes out bet-
ter, although it occurs for a lower value of the sorting
variable (smaller dissipation), for a given incident energy.
This is again an evidence of the robustness of bimodality
against non-equilibrium effects.

5 Perspectives

Bimodality is a very promising signature of first-order
phase transition because of its simplicity and robustness
against dynamical constraints. It was shown in this contri-
bution that the signal is quite common for the decay of hot
nuclei and can be observed in rather different experimen-
tal conditions (central/peripheral collisions, small/large
source sizes).

Nevertheless, some open questions need to be answered
in order to firmly assess the validity of this signal. Several
strategies can be envisaged in order to progress in this
direction:

— cross the observation of the bimodality signal with that
of all the other proposed signals for the phase transi-
tion such as critical exponents, scalings (Delta-scaling,
Fisher scaling, Zipf law), negative heat capacities, or
space-time correlations (emission times and correla-
tion functions). Obviously, when possible, all signals
should be studied on the same sample of events to min-
imise biases due to sorting. Such cross controls were
started by the INDRA [42] and NIMROD [26] Collab-
orations. One must solve however the problem of the
non-equivalence of statistical ensembles in some cases.

— Test the effect of sorting. Indeed different ways of sort-
ing were proposed (impact parameter selectors, com-
pact shape events, source selection). The robustness of
any signal will be established if its observation is not
drastically dependent on the chosen sorting for a given
centrality, for instance.

— Compare the results of different entrance channels
for nuclear collisions; by using asymmetrical reactions
such as light ions impinging on heavy targets, or
nucleon/pion-nucleus reactions, one may hope to dis-
entangle the different effects which could possibly gov-
ern bimodality. By using these very different entrance
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We
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channels reactions, the pre-equilibrium/neck contribu-
tions can be evaluated and even subtracted. Moreover,
the effects of large collective motions such as radial
flow (for central collisions) or spin (angular-momentum
transfer in semi-peripheral reactions) can also be mea-
sured. This will possibly help to answer the fundamen-
tal question of the type of phase transition which is
experienced by hot nuclei.

thank all the nuclear physicists around the world who send

us their results —published or not.
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